《食物科学》:中国尺度化研究院徐静婷博士:

 

  该丧失函数可以或许计较模子生成的预测分布取方针分布之间的差别,通过最小化差别,使得模子生成的输出愈加接近方针文本。即以token为粒度,权衡模子正在每个锻炼步调中生成的单词取方针单词之间的婚配程度。

  本研究环绕食物平安监管场景,提出了一种基于RAG框架的智能问答系统FSR-LLM,以提拔食物平安律例、尺度取合规性等方面问答的精准性和专业性。比拟于保守的RAG方式,FSR-LLM正在学问库层面连系了学问图谱,使食物平安相关学问的布局化程度更高,加强了上下文消息连系的能力。正在检索体例上,采用LLM指导检索策略,操纵其强大的文本解析能力,提取查询文本焦点实体,生成更为精准的检索查询语句,并进一步扩展查询这些实体的邻接节点,确保检索召回成果愈加全面且具备更强上下文联系关系性。此外,FSR-LLM中采用LoRA手艺对生成器Qwen-7B-Chat进行指令微调,可以或许正在单张4 090 GPU上实现高效低成本的锻炼,确保模子正在计较资本受限的下仍具备较强的顺应性。成果表白,FSR-LLM正在BLEU-4、Rouge-L和精确率等目标上均显著优于基线模子,验证了该方式正在食物平安监管问答使命中的无效性。

  正在精确率方面,Qwen-7B-Chat为12。19%,高于Baichuan-7B-Chat(9。38%)和ChatGLM3-6B(10。61%),但略低于DeepSeek-R1-Distill-Qwen-7B(12。41%)。这可能取其学问蒸馏算法策略相关。它能够使其正在特定使命上的泛化能力更强,可以或许更精确地捕获食物平安监管范畴的环节消息。但DeepSeek-R1-Distill-Qwen-7B正在BLEU-4和Rouge-L上的表示仍不及Qwen-7BChat,表白其正在生成质量和语义分歧性方面仍存正在必然差距。分析考虑各个方面,Qwen-7B-Chat仍是更优的选择。因而,最终选择Qwen-7B-Chat做为根本模子,进一步提拔其正在食物平安监管范畴对话使命中的机能,为相关智能问答系统供给更高质量的支撑。

  去除LoRA微调模块(w/o LoRA)后,模子的BLEU-4值、Rouge-L值以及精确率为15。29、28。42和37。13%,比拟于最终模子FSR-LLM别离下降了10。02、11。60和16。04%。表白LoRA微调正在无限计较资本下,仍能无效提拔模子对食物平安监管学问的理解能力。而正在去除学问图谱学问库模块(w/o KG)后,模子的BLEU-4值、Rouge-L值以及精确率别离为20。87、33。83和43。21%,下降了4。44、6。19和9。96%,申明食物学问图谱通过供给布局化的律例取尺度消息,有帮于提高FSRLLM对监管问题的回覆精确性。

  工商大学计较机取人工智能学院的毛典辉、王可浩,中国尺度化研究院的徐静婷*等问基于RAG架构提出了一个智能问答系统,全体布局如图1所示。其焦点是食物平安监管狂言语模子(FSR-LLM),旨正在以低成本实现高效的食物平安监管问答:起首,采用学问图谱布局组织食物平安相关学问,以系统化表达食物律例尺度、检测数据以及企业合规等消息。同时,正在检索策略上,针对食物平安学问系统错乱的特点,操纵LLM对用户查询文本进行智能解析,从全局语义的角度理解用户企图,精准提取查询文本中的焦点实体(如食物名称、企业从体等),并从学问图谱检索相关的三元组及其邻接节点,建立更为全面的提醒消息,确保可以或许涵盖食物平安监管中的焦点要素。此外,操纵低秩适配(low-rank adaptation,LoRA)手艺对生成器(LLM)进行指令微调,以较低的成本提高模子对带有食物平安专业术语、监管要求指令的理解能力。

  然而,本研究仍存正在必然的局限性,将来工做可从以下方面进一步优化:起首,当前系统正在复杂查询语境下的鲁棒性表示需要进一步地评估取验证,将来可建立涵盖分歧干扰要素的测试集,并引入愈加详尽的评估目标,以全面查验FSR-LLM正在实正在监管使命中的稳健性。此外,尝试中发觉LLM固有的生成随机性会导致评测目标存正在必然的波动,出格是正在性问题回覆时可能影响成果分歧性,需要摸索愈加不变、精确的评估策略。将来将继续努力于优化FSR-LLM的各项能力,以进一步提拔其正在复杂食物平安监管场景下的使用价值和决策靠得住性。

  然而,LLM次要依赖锻炼数据进行推理,其封锁式学问无法食物平安监管所需的消息及时性和权势巨子性。为了填补LLM难以动态更新学问以及正在食物监管范畴回覆精确性欠安等问题,引入检索加强生成(RAG)是一种无效的体例。它的道理是将LLM做为生成器模块,通过检索外部学问库(如包含食物添加剂尺度),获得取查询文底细关的消息,取提醒词归并后供给给LLM,使其可以或许正在生成谜底时引入最新、靠得住的学问,加强模子的专业性和可托度。

  同时发觉,DeepSeek-v3取GPT-4o做为目前国表里最为领先的模子,依托万亿级语料库展示出通用言语理解取生成能力,全体分数遍及高于其他通用模子。而正在面向食物平安监管这一垂曲范畴使命中,FSR-LLM仍能凭仗针对性的指令微和谐学问注入实现机能反超,出格是正在涉及食物添加剂尺度等律例条则的使用场景中,显示出更不变的合规性输出。这一表示得益于2 个方面:一是布局化学问建模体例对食物监管语料进行图式抽取取组织,加强了学问间的逻辑连贯性,显著改善了保守RAG系统正在多跳推理和语义整合方面的局限;二是生成模块引入了指令微调模子,检测数据等专业语义维度构成不变输出,显著提拔其正在高规范性使命中的表示。

  毛典辉,工商大学计较机取人工智能学院传授(博士生导师)。博士结业于华中科技大学系统阐发取集成专业,目前正在工商大学处置食物平安监管、区块链&AI融合使用等相关范畴研究。是农产质量量平安逃溯手艺及使用国度工程研究核心、食物平安大数据手艺市沉点尝试室主要,获聘全国工商联智库委员会委员,中国从动识别手艺协会专家,入选江苏省“企业立异创业(双创)人才打算”、市“青年英才打算”。掌管国度社会科学基金、市天然科学基金、市社会科学基金、教育部人文社科基金等课题项目,参取国度沉点研发打算课题、中国工程院严沉征询研究等多项课题。出书学术专著1 部,授权发现专利和软件著做权30余项,参取3 项国度尺度的制修订工做。正在《Computers and Electronics in Agriculture》《Chemical Engineering Journal》《Electronic Commerce Research and Applications》等颁发论文70余篇,此中被SCI/EI收录40余篇。

  徐静婷,中国尺度化研究院—大学博士后研究人员。博士结业于大学院,目前正在中国尺度化研究院处置尺度化取学问产权相关范畴研究。掌管或者参取国度市场监视办理总局委托项目、国度学问产权局软科学研究项目等省部级、地市级课题项目10余项。参取3 项国度尺度的制修订工做。正在《管理研究》《财贸经济》等中文焦点期刊颁发多篇论文。

  别的,大模子指导检索策略同样展示了强大的能力。正在取保守类似度计较方式的对比尝试中,基于LLM的策略正在BLEU-4、Rouge-L和精确率目标上均表示更优,表现出基于大模子指导的检索策略不只能婚配用户查询中的显性环节词,还能连系食物平安律例的上下文关系,精准检索出最相关的律例条目等消息。例如,正在食物召回通知布告问答中,精准检索策略使得模子可以或许精确提取通知布告中的产物名称、召回批次、召回缘由,避免因保守语义类似度检索体例带来的消息丢失或错误婚配。

  学问图谱的布局化消息检索加强取LoRA的高效微调手艺对FSR-LLM模子的机能提拔具有协同增效感化。学问图谱通过显式联系关系食物范畴实体关系,显著加强了模子的专业学问推理能力;而LoRA微调正在降低计较成本的同时,无效保留了PLM的泛化特征。二者的连系使得FSR-LLM正在生成精确性和语义连贯性上实现冲破性进展,验证告终合范畴学问库和高效微调策略正在提拔模子机能方面的无效性,更精准地辅帮食物平安监督工做。

  跟着食物供应链的全球化和食物品种的日益丰硕,食物平安监管反面临史无前例的挑和:食物平安律例尺度复杂且不竭更新,分歧地域的尺度存正在差别,添加了监管合规审核的难度。同时,人工智能(AI)范畴中狂言语模子(LLM)手艺正正在快速成长:从BERT(Bidirectional Encoder Representation from Transformers)引入双向Transformer布局以提拔言语理解能力,到GPT系列采用自回归架构强化文本生成,再到T5将多使命同一为“文本到文本”框架以加强泛化能力,以及PaLM等超大规模模子通过参数扩展显著提拔推理取上下文理解能力。正在此布景下,食物平安范畴送来了智能化监管的新机缘。近年来,研究者起头摸索将LLM使用于食物平安范畴的具体使命中。

  BLEU-4通过计较四元组(4-gram)的婚配精度权衡生成文本取尺度谜底之间的类似度。正在食物平安监管问答使命中,该目标可以或许评估模子能否精确复现律例条则、检测尺度和监管要求,确保生成内容正在措辞和布局上的精确性。Rouge-L采用最长公共子序列方式,权衡模子生成的回覆取参考谜底之间的语义堆叠度,关心消息完整性和逻辑连贯性。正在食物平安律例解析、企业合规性审核等场景下,Rouge-L可以或许反映模子回覆能否涵盖焦点监管消息,避免全面或不完整的解读。同时,食物平安监管对问答的精确性要求极高,因而采用精确率权衡模子能否可以或许供给符规等要求的谜底,确保正在食物添加剂性判断、出产运营许可查询等使命中不会生成性回覆。

  正在尝试方面,本尝试正在单张NVIDIA GeForce RTX 4090 GPU长进行模子微调取推理。RTX 4090具备24 GB显存和高效的计较能力,正在较强推能的同时,相较于数据核心级GPU(如A100、H800等显卡)大幅度降低了硬件成本,使得食物平安监管部分和相关企业可以或许以更低的计较资本投入摆设大模子使用。得益于LoRA微调方式,正在无限的计较资本下实现了对食物平安监管问答使命的高效适配。此外,整个尝试流程基于PyTorch深度进修框架实现,并连系Hugging Face生态进行适配,以确保模子的可扩展性和现实摆设的便利性。

  如图10所示,改良后的模子参考了最新的GB 2760—2024《食物添加剂利用尺度》,且明白指出该限量“以脱氢乙酸计”,同时供给了对应的食物分类号“04。02。02。03”,表现了回覆的靠得住性和精确性。

  为了全面评估FSR-LLM正在食物范畴使命中的表示,拔取国表里具有代表性的通用LLM进行横向对比,包罗GLM-4-Plus、L-3、Qwen-Plus、DeepSeek-v3和GPT-4o。它们均为各机构发布的旗舰级LLM,具备强大的通用机能和普遍的使用场景,而且正在多个基准测试中获得验证。通过取这些模子进行比力,探究FSR-LLM能否能正在连结高效计较效率的前提下实现机能劣势。如表3所示,FSR-LLM正在各项目标上表示十分超卓,均显著优于其他支流模子。具体而言,FSR-LLM的BLEU-4值为25。31,相较于GLM-4-Plus(6。77)、L-3(6。87)和Qwen-Plus(7。36)别离领先了18。54、18。44和17。95,证明FSR-LLM正在食物平安监管范畴下文本生成质量方面具有显著的劣势,可以或许更精确地生成取食物相关的天然言语描述,提拔了食物消息的表达和用户体验。例如,当生成关于食物平安或检测演讲时,FSR-LLM可以或许清晰、切确地描述问题,如“检测到含有过量农药的蔬菜”,同时供给相关的平安指点和处置办法,确保消息传送精确无误。正在Rouge-L目标上,FSR-LLM达到了40。02,比拟于次优模子GPT-4o(27。39)提拔了12。63,证了然FSR-LLM正在食物范畴的语义婚配度方面的强大能力,可以或许更好地捕获食物实体及平安消息之间的语义关系,确保语义和布景学问的精准婚配。而对于问答精确率,FSR-LLM达到了53。17%,表白其正在食物平安监管范畴问答使命的施行精度上有着不俗的表示,可以或许确保正在处置食物检测、违规行为识别和食物逃溯等使命时的靠得住性和高效性。

  为了验证各个组件对模子机能的贡献,进行了消融尝试,评估了4 种分歧设置装备摆设下模子(原始的Qwen-7B模子(w/o)、去除学问图谱学问库模块的模子(w/o KG)、去除LoRA微调模块的模子(w/o LoRA)以及最终模子FSR-LLM)的表示。如表4所示,FSR-LLM模子正在BLEU-4、Rouge-L以及精确率上别离达到了25。31、40。02和53。17%,较w/o设置装备摆设别离提拔了18。43、25。13和29。38%。成果表白FSR-LLM正在食物平安律例解析和监管问答等方面生成的文本更精确、消息更完整。

  正在本研究中,需要选择一个合适的根本模子做为生成器进行微调。为了评估分歧模子正在食物范畴对话使命中的表示,从建立的食物范畴问答对数据集中抽取了20%的数据做为测试集,并别离对Baichuan-7B-Chat、ChatGLM3-6B、Qwen-7B-Chat以及DeepSeek-R1-Distill-Qwen-7B模子进行了评估。如表2所示,Qwen-7B-Chat正在食物平安监管范畴问答使命上表示优异,BLEU-4值和Rouge-L值别离为6。88和14。89,优于其他3 个模子,申明Qwen-7B-Chat正在食物平安监管范畴的相关术语表达方面具有更高的精确性,可以或许更精准地舆解和生成取食物平安监管相关的专业术语,如“食物添加剂”“微生物污染”“风险评估”等。同时,较高的Rouge-L值也表现出该模子生成的回覆正在内容笼盖度和逻辑连贯性上更具劣势,可以或许更全面地涵盖食物平安监管的焦点问题,并生成布局清晰、逻辑严谨的谜底。

  值得留意的是,RAG手艺存正在必然的不脚:一方面,基于非布局化文本的学问库难以捕获食物相关尺度、检测演讲等数据间的复杂联系关系,导致推理结果欠安;另一方面,检索体例依赖静态语义类似度计较,无法顺应食物监管的复杂语义场景。为领会决这些问题,近年来研究者们提出了多种改良体例。

  为了验证方式的可行性,本尝试操纵随机采样的体例将食物平安问答数据集按照8∶2的比例划分为锻炼集和测试集,操纵测试集中的问题让FSR-LLM生成谜底,并取尺度谜底进行对比,以量化模子正在食物监管问答使命中的表示。

  为了验证FSR-LLM中所采用的食物学问图谱学问库以及大模子指导检索策略的无效性,将这2 种方式别离替代为保守的通俗文本学问库和基于语义类似度计较的检索方式,进行了对比尝试。如图8所示,食物学问图谱学问库的使用正在生成文本的多样性和精确性方面取得了显著劣势。FSR-LLM采用食物学问图谱学问库时的BLEU-4值为25。31,相较于通俗文本学问库的体例(21。70)提拔了3。61,表白学问图谱布局可以或许帮帮模子更无效地组织食物律例、食物尺度等环节学问点,并提高食物平安合规性判断的切确度。同时,采用食物学问图谱学问库的FSR-LLM Rouge-L值为40。02,较通俗文本学问库(35。39)提高了4。63,表白学问图谱能加强模子对食物平安监管律例条则和尺度内容的语义理解能力,使回覆更具逻辑连贯性。正在精确率方面,采用食物学问图谱学问库的FSR-LLM为53。17%,较着高于通俗文本学问库的47。56%,进一步验证了学问图谱能削减模子生成错误消息的可能性,确保食物平安监管问答的精确性。

  图7展现了微调Qwen-7B模子时的锻炼丧失变化曲线,包罗原始的丧失曲线和颠末滑润处置后的丧失曲线。表白模子正在晚期锻炼阶段快速进修了食物平安律例(如《中华人平易近国食物平安法》)、风险评估尺度(如HACCP系统)等环节学问,尔后期丧失的迟缓下降和逐步则反映出模子可以或许持续进行优化。整个锻炼过程丧失变化不变,申明指令微调后的Qwen-7B-Chat模子可以或许无效顺应食物平安监管使命的需求,生成符规要求的文本,并精确理解取食物平安相关的专业术语。

  正在评价目标方面,针对食物监管范畴文本专业术语稠密、律例表述布局化、平安目标切确性要求高档特点,本研究从生成质量、内容笼盖度及专业精确性3 个层面分析评价模子机能。拔取了BLEU-4、Rouge-L和精确率这3 个常用评测目标,以多角怀抱化FSR-LLM正在食物范畴问答使命中的表示。

 



联系我们

CONTACT US

公司名:江苏九游老哥J9俱乐部官网食品有限公司

联系人:张经理

电 话:0523-87308111

传 真:0523-87308111

网 址:http://www.ccpa-stcc.com

地 址:江苏省泰兴市黄桥镇通联路1号